
DISCOVER . LEARN . EMPOWER

UNIVERSITY INSTITUTE OF
ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
AND ENGG.

Bachelor of Engineering (Computer Science & Engineering)

Principles of Artificial Intelligence (20CST-258)

1 Alpha-beta pruning

Outline

• Alpha-Beta Pruning

• Pseudo-code for Alpha-beta Pruning

2

Alpha-beta pruning

• Alpha-beta pruning is a modified version of the minimax algorithm.

• It is an optimization technique for the minimax algorithm.

• As we have seen in the minimax search algorithm that the number of game
states it has to examine are exponential in depth of the tree. Since we
cannot eliminate the exponent, but we can cut it to half.

• Hence there is a technique by which without checking each node of the
game tree we can compute the correct minimax decision, and this
technique is called pruning.

• This involves two threshold parameter Alpha and beta for future
expansion, so it is called alpha-beta pruning. It is also called as Alpha-Beta
Algorithm.

3

Continued…

• Alpha-beta pruning can be applied at any depth of a tree, and sometimes it
not only prune the tree leaves but also entire sub-tree.

• The two-parameter can be defined as:
• Alpha: The best (highest-value) choice we have found so far at any point along the

path of Maximizer. The initial value of alpha is -∞.

• Beta: The best (lowest-value) choice we have found so far at any point along the
path of Minimizer. The initial value of beta is +∞.

• The Alpha-beta pruning to a standard minimax algorithm returns the same
move as the standard algorithm does, but it removes all the nodes which
are not really affecting the final decision but making algorithm slow. Hence
by pruning these nodes, it makes the algorithm fast.

4

Continued…

• Condition for Alpha-beta pruning:
• The main condition which required for alpha-beta

pruning is:
 α>=β

5

Key points about alpha-beta pruning

• The Max player will only update the value of alpha.

• The Min player will only update the value of beta.

• While backtracking the tree, the node values will be passed to upper
nodes instead of values of alpha and beta.

• We will only pass the alpha, beta values to the child nodes.

6

Pseudo-code for Alpha-beta Pruning

7

Working of Alpha-Beta Pruning

• Let's take an example of two-
player search tree to understand
the working of Alpha-beta
pruning
• Step 1: At the first step the, Max

player will start first move from
node A where α= -∞ and β= +∞,
these value of alpha and beta
passed down to node B where
again α= -∞ and β= +∞, and Node
B passes the same value to its
child D.

 8

Continued…

• Step 2: At Node D, the value of α will
be calculated as its turn for Max. The
value of α is compared with firstly 2
and then 3, and the max (2, 3) = 3 will
be the value of α at node D and node
value will also 3.

• Step 3: Now algorithm backtrack to
node B, where the value of β will
change as this is a turn of Min, Now
β= +∞, will compare with the
available subsequent nodes value, i.e.
min (∞, 3) = 3, hence at node B now
α= -∞, and β= 3.

9

• In the next step, algorithm traverse the next successor of Node B which is node E, and
the values of α= -∞, and β= 3 will also be passed.

Continued…

• Step 4: At node E, Max will take
its turn, and the value of alpha
will change. The current value of
alpha will be compared with 5,
so max (-∞, 5) = 5, hence at
node E α= 5 and β= 3, where
α>=β, so the right successor of E
will be pruned, and algorithm
will not traverse it, and the value
at node E will be 5.

10

Continued…

• Step 5: At next step, algorithm again
backtrack the tree, from node B to node
A. At node A, the value of alpha will be
changed the maximum available value is 3
as max (-∞, 3)= 3, and β= +∞, these two
values now passes to right successor of A
which is Node C.

• At node C, α=3 and β= +∞, and the same
values will be passed on to node F.

• Step 6: At node F, again the value of α will
be compared with left child which is 0,
and max(3,0)= 3, and then compared with
right child which is 1, and max(3,1)= 3 still
α remains 3, but the node value of F will
become 1.

11

Continued…

• Step 7: Node F returns the node
value 1 to node C, at C α= 3 and
β= +∞, here the value of beta
will be changed, it will compare
with 1 so min (∞, 1) = 1. Now at
C, α=3 and β= 1, and again it
satisfies the condition α>=β, so
the next child of C which is G will
be pruned, and the algorithm
will not compute the entire sub-
tree G.

12

Continued…

• Step 8: C now returns the value
of 1 to A here the best value for
A is max (3, 1) = 3. Following is
the final game tree which is the
showing the nodes which are
computed and nodes which has
never computed. Hence the
optimal value for the maximizer
is 3 for this example.

13

Ordering in Alpha-Beta Pruning

• The effectiveness of alpha-beta pruning is highly dependent on the order in
which each node is examined. Move order is an important aspect of alpha-
beta pruning.

• It can be of two types:
• Worst ordering: In some cases, alpha-beta pruning algorithm does not prune any of

the leaves of the tree, and works exactly as minimax algorithm. In this case, it also
consumes more time because of alpha-beta factors, such a move of pruning is called
worst ordering. In this case, the best move occurs on the right side of the tree. The
time complexity for such an order is O(bm).

• Ideal ordering: The ideal ordering for alpha-beta pruning occurs when lots of pruning
happens in the tree, and best moves occur at the left side of the tree. We apply DFS
hence it first search left of the tree and go deep twice as minimax algorithm in the
same amount of time. Complexity in ideal ordering is O(bm/2).

14

Rules to find good ordering

• Following are some rules to find good ordering in alpha-beta pruning:

• Occur the best move from the shallowest node.

• Order the nodes in the tree such that the best nodes are checked first.

• Use domain knowledge while finding the best move. Ex: for Chess, try
order: captures first, then threats, then forward moves, backward moves.

• We can bookkeep the states, as there is a possibility that states may
repeat.

15

THANK YOU

16

